الرياضيات المتناهية الأمثلة

Resolver para x الجذر التربيعي لـ 6x^2+16x = الجذر التربيعي لـ 3x+35
خطوة 1
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 2
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
استخدِم لكتابة في صورة .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 2.2.1.2
بسّط.
خطوة 2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
أعِد كتابة بالصيغة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.1
استخدِم لكتابة في صورة .
خطوة 2.3.1.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 2.3.1.3
اجمع و.
خطوة 2.3.1.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1.4.1
ألغِ العامل المشترك.
خطوة 2.3.1.4.2
أعِد كتابة العبارة.
خطوة 2.3.1.5
بسّط.
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.1.1
اطرح من كلا المتعادلين.
خطوة 3.1.2
اطرح من .
خطوة 3.2
اطرح من كلا المتعادلين.
خطوة 3.3
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 3.4
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 3.5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1.1
ارفع إلى القوة .
خطوة 3.5.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1.2.1
اضرب في .
خطوة 3.5.1.2.2
اضرب في .
خطوة 3.5.1.3
أضف و.
خطوة 3.5.2
اضرب في .
خطوة 3.6
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 4
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: